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pathogens. The accumulating body of literature on insect RNAi has revealed that the efficiency of RNAI
varies between different species, the mode of RNAIi delivery, and the genes being targeted. There is also
variation in the duration of transcript suppression. At present, we have a limited capacity to predict the
ideal experimental strategy for RNAI of a particular gene/insect because of our incomplete understanding

Kengrds: of whether and how the RNAI signal is amplified and spread among insect cells. Consequently, develop-
Antiviral therapy . . . . .. e .

dsRNA ment of the optimal RNAi protocols is a highly empirical process. This limitation can be relieved by sys-
Insect pest control tematic analysis of the molecular physiological basis of RNAi mechanisms in insects. An enhanced
RNA interference conceptual understanding of RNAI function in insects will facilitate the application of RNAi for dissection
siRNA of gene function, and to fast-track the application of RNAi to both control pests and develop effective
Systemic RNAI methods to protect beneficial insects and non-insect arthropods, particularly the honey bee (Apis melli-

fera) and cultured Pacific white shrimp (Litopenaeus vannamei) from viral and parasitic diseases.
© 2013 Elsevier Ltd. All rights reserved.
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1. Introduction

RNA interference (RNAi) has transformed insect science re-
search because it enables the researcher to suppress a gene of
interest and thereby link a phenotype to gene function. For basic
research purposes, RNAi offers a route to functional genetics in
all insects, including those for which transgene resources do not
exist {Belles, 2014). RNAI also has enormous potential for applied
entomology (Frice and Garehouse, 2008; Kue of al, 812). For
example, RNAI can be used for insect pest control by suppressing
essential genes leading to reduced fitness and/or mortality. Fur-
thermore, by priming the antiviral RNAI response with innocuous
viral sequences, beneficial insect species, such as honey bee (Apis
mellifera) and silkworm (Bombyx mori), can be protected from
highly pathogenic viral infections. However, the reality is not yet
matching the envisioned potential of RNAi. Practitioners are
increasingly aware that RNAI in insects can be capricious; efficacy
varies across insect taxa, among genes, with mode of delivery, and
even between different laboratories (Terenius et al, 2(411). All too
often, the application of RNAI technology is an empirical exercise:
“try it, for it might work”.

The goal of this article is to promote the use of practical princi-
ples to design and interpret insect RNAi studies. We know that no
single protocol can be applied for every gene in every insect. There-
fore, the specific purpose of this article is to provide a roadmap for
the application of RNAI for experimental analysis of gene function,
management of pests and protection of beneficial arthropods. The
article is divided into three sections. First, current knowledge of
the mechanisms and function of RNAI in insects is reviewed, high-
lighting the known variation among insect taxa. This information
offers a guide to the most appropriate strategy for different insect
systems, and provides the springboard for much-needed future
innovation in RNAI technology. Second, the design of RNAi studies
is addressed, using both empirical data and conceptual under-
standing to identify successful experimental designs, effective
methods for RNAI delivery, and informative indices of RNAI effi-
cacy. Importantly, there is no single protocol for the perfect RNAi
experiment, partly because the efficacy of RNAI strategies varies
among insect groups. In the third section, we turn to the applica-
tion of RNAIi for the management of pest and beneficial insects,

and discuss the unique opportunities and challenges associated
with each of these applications.

2. Mechanisms of RNAi

RNAI refers to the suppression of gene expression by small non-
coding RNA molecules, predominantly by the cleavage of a target
mRNA in a sequence-specific manner (Fire &t al., 1%%48), and the
general steps involved in this process are shown in Fig. 1. Upon cell
entry and recognition, double stranded RNA (dsRNA) is cleaved by
the RNase Il Dicer into 20-25 bp fragments with a two base over-
hang at the 3’ end. These fragments are incorporated into the mul-
ti-protein  RNA-induced silencing complex (RISC), where one
strand {the “passenger” strand) is eliminated and the other “guide”
strand is retained. The catalytic component of RISC is the RNase
H-like domain of an Argonaute protein, which cleaves single-
stranded RNA molecules having sequence complementary to the
guide RNA. Most eukaryotes, including animals and plants, have
Dicer and Argonaute proteins, and possess the RNAiI machinery
(Shabaling and Koonin, 3008),

The 20-25 bp RNAs generated by Dicer comprise two groups
(Ghildival and Zamore, 2008 Matrangs and Jamore, 2007 Asgard,
2{13); microRNAs (miRNAs), which are processed from endoge-
nous gene transcripts and function in the regulation of gene
expression, and small interfering RNAs (siRNAs), which are derived
from dsRNA mwolecules and provide defense against viruses and
transposable elements. The experimental use of RNAi exploits the
siRNA pathway, specifically the capacity of cells to degrade a sin-
gle-stranded RNA (ssRNA) {including mRNAs) with sequence iden-
tity to the administered dsRNA molecules.

Three processes determine what can be achieved by RNAi:
cellular uptake of the RNAi molecule (usually dsRNA), the produc-
tion of secondary dsRNA molecules in the cell, and the transfer of
these molecules to other cells (Fig. 1). Where the RNAi-mediated
silencing is transmitted widely throughout the treated organism,
RNAi is described as systemic (Whangho and Hunter, 2008;
Huvenne and Smagyghe, 2018). In principle, the success of an RNAIi
experiment could be predicted from the level of these activities in
the insect of interest, and strategies that increase these activities

dsRNA Uptake

Promoted by dsRMA specific
chansl andfor endocytosis

May be limited by dsRMases in
gestive tract and hemolymph

7 ™~ I ™

[ Among-Cell Spread | (RNAi Machinery ) { Within-Cell Amplification )

of Siiencing =% Core enzymes {Dicer & o of 3ilencing
i | Argonaute) present in ;
Via dsRNA or siRMNA ,\N‘} insects |

RNA-dependent RNA polymerase
apparently absent

g @ HE A BN . iane. . L
Ur;:mown route of export from Core o yfne\gbunqan\.e ; Incidence of amp tion &
1 oo / | may limit RNAI efficiency i\ possible mecharisms not known
t insome insects . A

-~

= Moleoular & Phenotypic
Conseguences

identify expected phenotyps in
W experimental design /

Fig. 1. The RNAI process in insects. See text for additional details
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might enhance RNAi-mediated knockdown of the target gene
expression. The difficulty is that we have little or no understanding
of whether or how dsRNAs are amplified within insect cells or
disseminated among insect cells.

In C elegans, systemic spread of RNAI is optimal for dsRNA mol-
ecules >50bp long, and is independent of Argonaute function
(Feinberg and Hunter, 2003; Tabara et al, 19898), suggesting that
the molecules moving between cells are clsRNAs, and not amplified
siRNA. Uptake of dsRNA by somatic cells requires the protein SID-1
{systemic interference defective-1), which is inferred to function as
a dsRNA channel (Winston et al, 20G2). Other C. elegans proteins,
SID-2 and SID-5, have been implicated in dsRNA uptake by gut cells
and dsRNA export from cells, respectively (Hinas et al, 2072, Win-

ston et al, 2007), Putative insect orthologs of the C. elegans sid
genes have been described (e.g. Dong angd Friedrich, 2085, Xu
and Han, $008), but these reports deserve careful evaluation. The
sid-1-like genes in various insects have a greater sequence identity
with the C elegans gene chup-1, also known as tag-130, than to
sid-1., CHUP-1 is a cholesterol transporter and has no known
involvement in RNAI (Valdes et al, 20132). As an illustration, a gene
in Locusta migratoria initially identified as sid-1-like is not required
for systemic RNAI (Luwo 2f al, 20132), and is the ortholog of C. elegans
CHUP-1 {as determined by top reciprocal BLASTp hit), and not
SID-1.

Plants and the nematode Caenorhabditis elegans possess an
RNA-dependent RNA polymerase (RARP) (Fak amd Fire, 2007 Xie
21 al.. 2001) that facilitates the within cell amplification of sﬂenc—
ing. The fragments of the target ssRNA released from the RISC act
as a template for RARP-dependent dsRNA synthesis, yielding more
substrate for RISC-mediated degradation of the target ssRNA. Effi-
cient amplification of RNAi by RdRP can drive the abundance of the
target ssSRNA molecule to undetectable levels, and RdRP is essential
for RNAI in C. elegans (Sien et al, 2041). RdRP has been identified
in a few animal species beyond Caenorhabditis nematodes, includ-
ing the cephalochordate Branchiostoma floridae (Vienune ef al,
Z8043%), but no verified RARP homolog is evident in any insect gen-
ome sequenced to date (Tomoyasuy et al, J008). It is unclear
whether or how the RNAI triggered by the acquisition of dsRNA
molecules is sustained in insect cells (Fig. 1),

Analysis of gene orthology between C. elegans and insects has
been a productive approach to identify the core RNAi machinery
in insects, but far less informative for understanding the molecular
basis of intracellular amplification and systemic spread of RNAI.
The alternative discovery-based strategy of a genetic screen, using
rescue from RNAi-lethality, has great potential. For example, Uiviia
21 al. {2004} demonstrated that uptake of dsRNA by Drosophila S2
cells is strongly endocytosis-dependent, and mediated principally
by the scavenger receptors Eater and SR-CI. We should, however,
be cautious in extrapolating from these data to organismal RNAi
because S2 cells, which are hemocyte-like, display high rates of
endocytosis as compared to the majority of cell types in the intact
insect.

The physiological role of insect RNAi could be informative in
predicting RNAI efficacy in different insect taxa and cell types
and, by extension, the development of sustainable strategies for
RNAI applications in field conditions. There is a strong consensus
that RNAI contributes to insect immunity against viruses with a
dsRNA genome or dsRNA replicative intermediates in the cyto-
plasm of infected cells (Blatr, 2011 Schnettler ef al, 202). We
could, therefore, expect greatest success with RNAI in insect spe-
cies and cell types that utilize RNAI as a primary anti-viral immune
response. Some insects or cell types may have low responsiveness
to exogenously-applied dsRNA because they utilize alternative
anti-viral defenses (e.g. apoptosis of infected cells, symbiont-med-
iated protection) (Merkhing and van Ry, 2013). It should also be
noted that certain insect viruses suppress RNAI For example, flock

injection
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Fig. 2. Current methodologies for RNAi delivery in insects: a guide on the
performance of different delivery methods. All approaches yield transient RNAi
other than the transgenic method. ?=lack of data prevents evaluation. RNAi
efficacy in Drosophila is limited to hemocytes if delivered by injection (®filler et al.,
2003). Delivery by feeding can be highly effective (Whiyard ot al, 2403), but
transgenesis is the preferred methodology. In Aedes aegypti, RNAI has been most
successful by injection (e.g. Carn 38), transgenesis (e.g. Bian ot al.
2004%), and viral transduction (e.g. 1), with a few reported
instances of success by feeding (v 3 2: Mysare ef 4l K
application (Prisigeon et al, 2008). Most cases of successful RNA1 in Tribolium
castaneum have been by injection (e.g. Avakane ¢ al, 2003). RNAI efficacy in
Manduca sexta is most effective by injection for immune-related genes, and there is
ev1dence to support successful gene suppression by delivery by feeding (Tererdus
ot g, 20371). RNAI in A. pisum has been successful by both injection (®uiti
”(Sﬁ"v) and feeding (Shabesby et al, 2003). RNAI in Apis mellifera is effective for a
variety of genes and hfe stages both by injection and feeding (Amdant et al., 2003;
Haon t al 2810). Even where a specific method of application has shown success
for RNAI of certain genes, the effective suppression of all genes by that technique is
not guaranteed.

house virus (FHV) codes for a protein, known as the B2 protein,
that binds to dsRNA, including the FHV replication intermediate,
preventing cleavage by insect Dicer and incorporation into RISC
(Chao et al, 2003). An insect infected with an asymptomatic, per-
sistent virus that codes for an RNAi suppressor would display lim-
ited responsiveness to experimental RNAI (Berry ot al., 2009).

3. Designing a RNAIi experiment

As described above, RNAI application and efficacy remains var-
iable between genes, organisms and life stages, despite the tre-
mendous utility that RNAi presents for improving our
understanding of fundamental biological questions and for pest
control. In addition, in insect species where RNAI is predominantly
environmental with little evidence for systemic propagation, inter-
ference can vary widely between tissues due to differences in the
efficacy of dsRNA uptake. Extreme examples are D. melanogaster
and Manduca sexta where transcript knockdown by injection of
dsRNA has only been achieved in hemocytes which are capable
of endocytosis (Miller ef al., 2008; Terenius ot al, 2011), In mosqui-
toes, most tissues can be reached by the 1nject10n of dsRNA, how-
ever the success of knockdown in the central nervous system
varies highly between genes and may be dose-dependent {(Lyceit
af al, 2008 Blessmann et al, 2010). Tissue differences in RNAI effi-
cacy may be overcome by the design of new delivery methods,
including transgenesis or viral transduction, which eliminate the
requirement for cellular uptake of the RNAI trigger. Development
of such technologies is lacking for the majority of species (Fig. 2
and Section 3.2 below).

The aforementioned biological variables, including presence/ab-
sence of the core RNAI machmery, cellular uptake and propagation
of signal (Roignant v al, 200%; ler e 200¥), and dsRNA
degrading enzymes (‘%z.za;atsu e al, 2007), as well as other differ-
ences in genetic backgrounds (Kitzmann et al., 2013), greatly affect
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the success of RNAI experiments in different species. Often, these
challenges can be mitigated by experimental factors including
the design of the RNAi molecule, the mode of delivery and the dose
of the dsRNA molecule.

3.1. The RNAi molectile

The success of an RNAIi experiment hinges on the production of
a specific RNAI molecule (in the form of dsRNA, siRNA, or a hairpin
RNA) for a target gene of interest (GOI). Experiments should in-
clude an RNAi molecule against a heterologous sequence absent
from the target insect’s genome (typically green fluorescent pro-
tein (GFP) or LacZ), to control for both the administration of the
experimental dsRNA and the physiological impact of triggering
the RNAI cascade. In some cases, a positive control can be incorpo-
rated into the experimental design. For example, in Tribolium, the
use of RNAI against vermillion (white) or Lac-2 provides rapid phe-
notypic evidence of RNAi success manifest in white compound
eyes or white pupae, respectively (Arakane et al, 2005, 2011).

A crucial consideration is the choice of sequence for dsRNA
preparation, especially its length and sequence identity to the tar-
get transcript of the insect. Huvenne and Smag (21 provide a
comprehensive survey of the length range of dsRNAs used in early
studies: from 134 to 1842 bp, with most studies using 300-520 bp.
Comparisons among gene regions (e.g., 5’ end) to which RNAi mol-
ecules are designed have yielded variable results. For example,
RNAi against hunchback (hb) in Acyrthosiphon pisum resulted in
similar mortality whether the RNAI trigger was designed against
the 5’ or 3’ end of the gene {}Mac and Feng 2012), but the 3’ portion
of the inhibitor of apoptosis gene in Aedes aegypti yielded a greater
effect on mosquito mortality than dsRNA targeting the 5 or central
region of the gene (Iridgeon ef al, 2008), and the most effective
antiviral RNAI molecule against infectious myonecrosis virus
(which infects the Pacific white shrimp, Litopenaeus vannamei)
was at the extreme 5 end of the genome (Loy of al, 2012). These
varied results illustrate the importance of screening multiple RNAI
sequences for a gene of interest.

Generally speaking, greater success with insect RNAi has been
obtained with dsRNA molecules >50-200 bp in length (Huvenne
and Smagghe, 20148), although the minimal length required to ob-
tain maximal biological activity varies among insect species
(Bolognest et al, 2{(112). Suppression of gene expression has been
achieved with siRNAs (either synthesized directly or obtained by
“dicing” the dsRNA in vitro before administration to the insect),
for example in the lepidopteran Helicoverpa armigera (Kumar
ot al, 2012), aphid A. pisum (Mutii ot al, 2008) and tsetse (Attardo
¢t al, 2012), It may, sometimes, be necessary to design the RNAi
molecule of shorter length than ideal to obtain specificity, espe-
cially where one member in a gene family that has high sequence
similarity is being targeted. Regardless of the desired size of the
RNAi molecule, the design process can be aided by software that
is informed by genome sequence and RNA folding kinetics to opti-
mize effectiveness; for example, E-RNAi currently offers dsRNA
and siRNA design suggestions for A. mellifera, Tribolium castaneum,
A. pisum, Anopheles gambiae and Ae. aegypti (Horn and Boufros,
2.

A further issue to be considered in the design of RNAiI molecules
is the exquisite specificity of RNAI In the context of field applica-
tions of RNAI, this property facilitates design of insect-lethal se-
quences that are highly species-specific. For example, feeding four
species of Drosophila with species-specific vATPase dsRNA resulted
in reduced vATPase mRNA and significant mortality in conspecific,
but not heterospecific flies (Whyard et al,, 200%). In basic research
pursuits, this property affords researchers the capacity to silence
alleles (using short dsRNA) of the same gene specifically, e.g. TEP1
alleles in An. gambiae (Blandin et al., 2009). Conversely, two alleles

of a heterozygous individual, as well as genetically-distinct mem-
bers within an insect population, whether in the laboratory or field,
may differ in their susceptibility to RNAI. This concern is amply jus-
tified by studies on the effect of mismatches between the dsRNA
and its intended target (i.e. mRNA) using synthetic siRNAs adminis-
tered to mammalian cells in culture. Most single mismatches
impair the RNAI effect (Birmingham et al, 2008 fackson ot al,
200 ioceph and Osman, 20128 Wu e al, 2011); some mis-
matches, however, alter the cellular response from one of transcript
loss {siRNA) to translational repression, (Hu et al, 201y Tomart
et ai, 2007). The advantages of using longer >200 bp dsRNA for
RNAi strategies in pest management is the production of many
siRNAs against the targeted mRNA transcript; potentially maximiz-
ing the RNAI response. Further studies will be necessary to clarify
the extent to which the responses to mismatches in dsRNA and
target mRNA in whole insects differ from the siRNA studies which
used a single construct conducted on cultured mammalian cells.

3.2. RNAI delivery

Efficacy of an RNAI experiment can be influenced strongly by
the mode of delivery of the RNAI trigger (Fiz. 2 and references
within). The most widely used routes for administering RNAI to in-
sects are injection into the hemolymph and feeding. Microinjection
was used in the first successful application of RNAI in an insect, to
obtain knockdown of frizzled in Drosophila melanogaster (Kenner-
delt and Carthew, 1998), This method was quickly transferred to
T. castaneum (Brown et al, 1589) and subsequently applied to adult
insects in An. gambiae (Blandin ot al, 2002). Microinjection has
been applied to all life stages in hemi- and holometaboelous insects
in a rapidly growing number of orders; indeed routine protocols
are now in place for injection for various taxa, including Tribolium,
B. mori, several genera of Diptera, the honey bee, cockroaches and
orthopterans [for a list of references, see Belles {2G10)].

An important barrier to the use of microinjection in some in-
sects is non-specific damage caused by mechanical damage, which
is most often pronounced when targeting embryos. Experimental
variables that influence survivorship include methods of immobili-
zation {cold, CO,, adherence to a substrate), injection volume, site
of injection, and dilutants. Although water or physiologic saline
work well for most species, the diluent may require adjustment
to the particular osmotic pressure of the hemolymph.

Oral delivery is a less-invasive and potentially a high-through-
put method for RNAI delivery. It has particular value for insects
that are intolerant of injection (Fig. ¢) and for field applications
for RNAi-mediated pest control (see Section 4). Protocols for
administration of dsRNA synthesized in vitro and incorporated into
the diet are now available for honey bees, aphids, whiteflies and

ronstein et al, 2€3€‘G Wurtyanghan et ab, 2011 Ghanim
et al, 2007 Whyard er all, 200%), RNAI delivery to phytophagous
insects can also be achieved by engineering plants to express
dsRNAs in plant systems for which transgene introduction technol-
ogies are available (¥iz, 2). Two complementary methods are in
use: stable transformation by hairpin dsRNAs that target insect
genes (Raum at al, 2007) and transient virus-induced gene silenc-
ing (VIGS), in which engineered viral vectors carrying the gene se-
quence of interest are transformed into Agrobacrerium tumefaciens
and infiltrated into the plant tissue (Surch-Smith et al,, 3004), Both
approaches have been exploited, to achieve transcript suppression
in Coleoptera (Baum ot al, 307), Lepidoptera (Baum et al, 2047,
Humar ef al, 2012) and Hemiptera (Fiting of al. 2011 Zha et al,
2(11). In some species, notably dipterans, oral delivery of RNAi
triggers has yielded less consistent results than microinjection
(Fhang ev al, 2018), Further, in Lepidoptera, feeding as a mode of
delivery necessitates the provision of high doses of RNAI trigger
(Tersnius ot al, 2011). This can be attributed to a variety of factors.
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The efficacy of RNAI of midgut transcripts may be reduced due to
low or inconsistent doses taken up by individual insects, frequency
and size of feeding, plus GI tract morphology and physiology will
affect the actual dose of RNAI that reaches the midgut epithelium.
In addition, there is evidence for production of mRNAs that encode
putative secretory dsRNA-degrading enzymes in insects, notably B.
mori, that can interfere with the RNAI response (Aninatsu et al,
2007; Lin et al, 2{112). Establishing protocols for consistent RNAi
induction by feeding in different species may, therefore, prove
challenging. In addition, oral delivery of RNAi molecules in species
where systemic RNAi cannot be achieved limits its application to
genes expressed in gut cells (Fig. 2).

A minority of studies have exploited alternative routes for
dsRNA delivery, including electroporation, soaking or ectopic
application, incorporation into nanoparticles, expression in bacte-
ria, topical application, injection into woody plants, direct absorp-
tion of dsRNA in water solution into plant cuttings, or rooted
seedlings and trees and solubilization using transfection agents,
such as Lipofectamine™ (Wang ot al, 2011 Karim et al, 281
Fhang et al, 2008 Pridgeon et gl 2008, Lopes-Martiner of al,
2012 Hunter ot al, 2(12). For additional consideration of this to-
pic, the reader is referred to Y ¢ al. {2013}, which provides a com-
prehensive review of the history and current practice.

3.3. RNAI dosage

The requisite dose of RNAi molecules varies with insect species,
life stage, the target gene transcript abundance and its spatial and
temporal expression profiles, and according to the delivery method
of choice. The viscosity of high dsRNA concentrations limits the
injectable concentrations to 6 pg pul~' (K. Michel, unpub data),
and the cost of synthesizing large amounts of dsRNA presents a
challenge for high concentrations in artificial diets. Species- and
tissue-specific biological factors, including the degradation of
dsRNA, and weak activity of the RNAi machinery, can influence
the efficacy of RNAI, often requiring relatively high dosage of RNAi
mwolecules. There is now persuasive evidence for dsRNase activity
in various extracellular fluids of insects, including the digestive
juices of B. mori (Avimatsu ¢t al, 2007), the saliva of the hemipter-
an Linus lineolaris {Allen and Walker, 2012) and the hemolymph of
M. sexta (Garbutt ef al, 20313), Although, to our knowledge, this has
not been reported in insects, the difficulties in achieving RNAIi of
genes expressed in neurons of the nematode C. elegans has been
attributed to the high expression of a nuclease (eri-1, enhanced
RNAi-1) in these cells (Kennedy o ab,, 2004),

The mode of uptake, ability to spread RNAi molecules and abil-
ity to process the RNAiI molecules are other important consider-
ations that no doubt strongly influences the requisite dose
required to induce a RNAI response. In D. melanogaster larvae, cell
autonomous RNAi can be induced readily by the expression of
short hairpin RNAs from a transgene; however, injected dsRNAs
fail to trigger RNAI in most tissues with the exception of hemocytes
(dditler of al, 2008). A higher dose is usually required when the
RNA molecule is delivered orally as compared to injection. Multiple
introductions of dsSRNA can enhance the efficacy of RNAI in the sal-
ivary glands of Rhodnius profixus (Arauo ef al, 2008), and although
the basis for this effect is not fully understood, one attractive
hypothesis is that elements of the RNAi machinery may be ex-
pressed at low levels in some tissues (Chinfapaili ef al, 28607;
Rinkevich and Scott, 201%), but can be induced in response to the
RNAI molecule (frarbutt and Reynobds, 20012, Liw ot al, 28013), Per-
tinently, Ae. aegypti, mounts an antiviral RNAI response to Sindbis
virus infection, but transcript levels for Dicer and Argonaute do not
change appreciably; only Tudor staphylococcal nuclease, an ele-
ment of the RISC, shows nioderate increase in transcript abun-
dance during an active RNAi response (Camphell e al, 200¥).

Further research is required to establish the incidence and signifi-
cance of inducibility in RNAI function.

3.4. Choice of gene: transcript abundance and protein stability

In principle, the ideal gene target for RNAI produces an mRNA
pool with high turnover that codes for a protein with a short
half-life. The use of RNAI for phenotypic analysis of gene function
in any life stage could be more difficult if the protein product of
the target gene has a long half-life. For example, nicotinic acetyl-
choline receptors {nAChRs) can be stable for >2 weeks (Lomazzo
af al, 201 1) and this protein stability may explain the weak pheno-
typic response associated with RNAi-mediated knockdown of Du6
(nicotinic acetylcholine receptor subunit) expression in both D.
melanogaster and T. castaneum (Rinkevich and Scotf, 2013), How-
ever, for the great majority of genes, mRNA turnover and protein
half-life are not known. This gap in our knowledge presents a ma-
jor challenge for RNAi experiments.

3.5. Evaluation of RNAI experiments

The desired result of an RNAi experiment varies with the pur-
pose of the study. High insect mortality is a successful outcome
for investigations designed to identify novel RNAi-based strategies
to control an insect pest, but a hindrance to many experimental
investigations of gene function. For many analyses of gene func-
tion, physiological indices of predicted function should be central
to the analysis. For example, if a gene under study has a predicted
role in protein digestion, osmoregulation or olfaction, then analy-
ses of gut protease activity, hemolymph osmotic pressure and elec-
troantennogram data, respectively, may be useful physiological
indices. For some experiments, it may be necessary to reduce the
RNAI dose to obtain a reliable physiological signal of gene function
obtained by an intermediate expression knockdown, because
strong knockdown could result in secondary, deleterious effects
on insect fitness that obscure the primary lesion. It is, therefore,
important to define the appropriate physiological and fitness as-
says as an integral part of the experimental design.

The successful reduction of transcript levels as a result of RNAI
is mwost commeonly measured by RT-gPCR and expressed as a per-
cent reduction of the relevant transcript in the treatment group
versus the negative control group (in which animals were sub-
jected to an RNAi molecule for a heterologous gene). Although this
methodology is widely accepted, the choice of reference or house-
keeping genes for calculating relative transcript levels is challeng-
ing. Even if reference genes for RT-qPCR have been described and
validated on the species level, the expression of a reference gene
may vary with the physiology and the tissue being targeted [e.g.
Ponton et al, (20171 (Drosophila), Scharlaken ot al (2008) (honey
bees), Majerowicz et al, {2611} (Rhodnius))].

Ultimately the phenotypic result of an RNAIi experiment hinges
on the reduction of protein levels for the gene of interest, and it is
highly desirable to determine relative protein concentration. The
effect of RNAI on the protein may not be well-correlated to the le-
vel of transcript suppression. For example, following dsRNA injec-
tion targeting An. gambiage SRPN2, SRPN2 protein is not detectable
by western blot in the hemolymph, but transcript levels remain at
40-60% compared to controls (*Miche! ef al., 2003). Finally, it is pos-
sible that RNAI could lead to suppression of transcript (and pro-
tein), but not yield a phenotype, particularly where redundancy
is built into a specific biological function. For example, deletion
of one of the most abundant nAChRs in the insect nervous system
results in flies that are “normal” (Pervy et al, 2047). Whether
redundancy will present a limitation for a significant number of
other genes remains to be established.

ED_006741_00009648-00005



J.G. Scott et al. /Journal of Insect Physiology 59 (2013) 1212-1221 1217

4. Application of RNAi for the management of insect
populations

The potential of RNAI for the management of pest insects and
protection of domesticated beneficial insects, especially the honey
bee, is widely recognized (Xue ot al, 2312). In principle, the se-
quence used in RNAI can be tailored to any taxonomic scale, from
a single genotype to a family or even order of insects; and the iden-
tity of the target sequence can be manipulated at will, enabling the
practitioner to respond rapidly to novel pest taxa or to diminishing
efficacy (due to the evolution of resistance, for example) of one tar-
get sequence or combination of sequences. In other words, RNAI
offers exquisite specificity and flexibility that cannot be matched
by traditional chemical insecticides, biological control by natural
enemies, or plants bearing protein-coding transgenes.

4.1. RNAI and the control of insect pests

Proof of principle for the application of RNAI in insect crop
pest control comes from early studies conducted on the western
corn rootworm, Diagbrotica virgifera virgifera (WCRW) (Baum
ot al., 2887), and cotton bollworm Helicoverpa armigera (CBW)
(Man et al, 2007). Baum et al {2007} fed larval WCRW on 290
dsRNAs, from which they identified 14 genes that reduced larval
performance, and one of these, vacuolar ATPase subunit A (V-ATP-
ase), was carried forward for detailed analysis. Low concentra-
tions of orally-delivered dsRNA against V-ATPase in artificial
diet suppressed the corresponding WCRW mRNA. Importantly,
larvae reared on transformed corn plants that express V-ATPase
dsRNA also displayed reduced expression of the V-ATPase gene
and caused much reduced plant root damage (Baum ¢t al,
2007). In the study of 8an et all {20077 on CBW, the target gene
was a cytochrome P450, CYP6AE14, which is expressed in the lar-
val midgut and detoxifies gossypol, a secondary metabolite com-
mon to cotton plants. When CBW was exposed to either
Arabidopsis thaliana or Nicotiana tobacum expressing CYPGAE14
dsRNA, levels of this transcript in the insect midgut decreased,
larval growth was retarded, and both effects were more dramatic
in the presence of gossypol (Mao et al., 28{7), Transgenic cotton
plants expressing CYP6AET4 dsRNA also support drastically re-
tarded growth of the CBW larvae, and suffered less CBW damage
than control plants (kao et al, 2011). The research on both
WCRW and CBW has been extended to additional genes. The
Snf7 gene, which is involved in trafficking of membrane recep-
tors, has been reported to be effective against both D. v. virgifera
and D. v. howardi larvae (Bolognesi er al, 2012 Ramaseshadn
ef al, #013); and cotton plants engineered to express cysteine
proteases attenuated the peritrophic matrix of CBW, resulting
in increased uptake of the dsRNA (Man et al, 2013), Importantly,
cotton plants expressing both the dsCYPG6AE14 and cysteine pro-
tease were more protected from bollworm than either of the sin-
gle-transgene lines (Mao of al, 201%),

The studies of Bawun et al, {2007 and yet al (2007 illustrate
two key issues for successful RNAI of insect crop pests: choice of
the target sequence(s) for RNAi; and mode of delivery. The target
gene must be an essential insect gene that is consistently ex-
pressed through the relevant life-stages and yields reliable RNAi-
induced depression of insect performance. As the technology
moves from proof of principle to application, very careful consider-
ation of the design of the target sequence(s) is required. The pre-
requisites for success are perfect sequence identity between at
least some of the 21-25 bp siRNAs derived from the dsRNA and
the cognate mRNA of the insect pests; and sufficient sequence
divergence between all the siRNAs and protein-coding genes of
non-target organisms. These analyses can be conducted in silico,

by comparing a 21-25 bp moving window along the candidate
dsRNA sequence to both the target gene in all target insect taxa,
and to all predicted protein-coding genes in all other publicly-
available genomes. It may be appropriate to obtain genomic or
transcriptomic data for other non-target taxa that currently lack
genomic resources, so that the in silico analysis of the proposed
dsRNA sequences includes ecologically-relevant organisms. Any
proposed dsRNA that fails to yield multiple siRNAs with perfect
match to the sequence in all pest insects, or that yields a single siR-
NA that matches the sequence in any relevant non-target organism
should be discarded. Less certain is the degree of sequence mis-
match between dsRNA-derived siRNAs and a non-target organism
that can be tolerated. Because siRNA molecules can inhibit transla-
tion of transcripts with less than perfect sequence identity, the
threshold for concern about non-target effects could be less than
100% sequence identity. Further work is required to determine
the relative amount of mismatch between the target and effector
that causes lack of efficacy. Such results would inform our under-
standing of how to optimize pest management while minimizing
effects to non-target organisms and slowing the evolution of resis-
tance (Section 4.3).

The second issue important for the success of RNAI is delivery
at an effective dose, while maintaining acceptable production
costs, Recent breakthroughs in dsRNA production methods,
which can produce kilogram quantities, continues to reduce
the cost associated with dsSRNA production and makes it feasible
to start discussing strategies which will apply dsRNA products as
baits, sprays, or through irrigation systems (Hunter et al, 2014,
2{312). In planta RNAI has great potential not only against chew-
ing insect pests [such as the WCRW and CBW studied by Baum
et gl (2007 and Mao et al {20073, but also against plant sap
feeding pests. Transgenic technologies involving expression of
toxins from Bacillus thuringiensis (Bt) in crop plants have, con-
tributed little to the control of sucking insect pests, because Bt
endotoxins have yet to be identified with activity against these
pests (i e al, 2011). In addition, these insects are becoming
increasingly prevalent in Bt crops, as a result of ecological re-
lease due to reduced use of broad-spectrum insecticide treat-
ments previously used to control lepidopteran and coleopteran
pests (Faria et al, 2007 Ly &t al, 20180). Pyramiding RNAI tech-
nologies against sap feeders with Bt (or other technologies)
against chewing insects could resolve these difficulties. The
experimental demonstrations of in planta RNAi against the rice
plant hopper Nilaparvata lugens (Fha =t al, 2011) and the aphid
Myzus persicae (Pitino et al, 2811) provide a proof of principle
for this technology.

Alternative approaches are being developed for RNAI delivery as
a conventional pesticide, for example as insecticidal baits for urban
pests, such as ants, cockroaches and termites (Zhou ef al., 2048), or
for the aquatic larval stages of mosquitoes (see below). The com-
mercial potential of these methods depends critically on the ability
to deliver dsRNA to the target insect, which is in part determined
by stability of the dsSRNA in the environment, its concentration in
the baits and take-up rates by the insects, as offset against the pro-
duction costs for dsRNA. These objectives will be facilitated by for-
mulations that enhance the uptake of dsRNA into insect cells and
its protection against insect dsRNases. For example, dsRNA forms
stable 100-400 nm particles in association with chitosan, through
the electrostatic forces between the positive charges of the amino
group in chitosan and the negatively-charged RNA (McCarroli and
Havailaris, 2012), Thang et al. {2010) used the chitosan nanoparti-
cle-based RNAI technology to suppress the expression of two chitin
synthase genes (AgCHST and AgCHS2) in African malaria mosquito
(An. gambige) larvae. Although this treatment did not kill the lar-
vae, it did reduce the larval chitin content and increased larval sus-
ceptibility to the insecticide diflubenzuron.
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4.2. RNAi and the protection of insects against parasites and pathogens

The susceptibility of many eukaryotic parasites to RNAI offers a
novel strategy to enhance the health of beneficial insects. Of
course, this strategy does not apply to bacterial pathogens or the
various eukaryotes (e.g. trypanosomes and Plasmodium species)
which lack any known capacity for RNAi. The opportunity is vividly
illustrated by the microsporidian parasite Nosema of the honey
bee. Nosema causes high morbidity and mortality of honey bees
(Martin-Hernandez of al, 2011). Two aspects of the biology of No-
sema make it an especially suitable target for RNAi-based strate-
gies: it has the molecular machinery for RNAI, and it colonizes
midgut epithelial cells, a site readily accessed by ingested dsRNA.
When fed honey infected with N. ceranae plus dsRNA specific to
the Nosema ADP/ATP transporter gene, which is essential for Nose-
ma energy metabolism, honey bees had a reduced Nosema load and
lower mortality, together with suppressed transcript abundance of
the target genes (Faldi et al, 2410)

Eukaryotic parasites that exploit insect organs other than the
gut would be susceptible to RNAi only where the insect host dis-
plays systemic spread of the RNAi signal. This has been demon-
strated for the ectoparasitic mite, Varroa destructor, which feeds
on the blood of honey bees (Garbian et al,, 2012). When bees were
fed on dsRNA specific to a panel of Varroa genes, the density of Var-
roa mites on the bees was reduced by up to 50%, with no apparent
deleterious effect on the honey bees. The pattern of spread of the
RNAIi was tested by allowing honey bees to feed on sucrose solu-
tion containing dsRNA-GFP (green fluorescent protein; because
the genomes of both the insect and mite lack the GFP gene, the dis-
tribution of GFP-RNA could be monitored without interference
from sequence of endogenous origin). When Varroa-infested bees
were fed on the test solution, the GFP-RNA was recovered in the
Varroa. Moreover, when these Varroa were subsequently trans-
ferred to bees feeding on sugar solution without dsRNA-GFP, the
recipient bees acquired the GFP-RNA. These experiments demon-
strate that the RNAI can be amplified and spread not only at the le-
vel of the individual insect, but also at the colony level in honey
bees. Further research is required to establish the frequency and
dose of RNAI applications required to sustain protection of colo-
nies, and whether this approach offers a cost-effective strategy
for the control of Varroa mite, which is of first-order importance
in compromising the health of honey bee colonies.

RNAI also holds potential to clear insect vector species from
parasites, that themselves are not susceptible to RNAi. A prime
example is parasites of the genus Plasmodium, the causative agent
of malaria (Baum et al,, 200%). Conceptually, depletion of proteins
required for parasite entry or survival within the insect vector by
means of RNAi could be used to create refractory mosquitoes
(Brown and Catteruccia, 2008), Proof-of-principle successes have
been achieved in the laboratory (Dovg et al, 201 1), Effective RNAI
delivery methodologies that are field-deployable involve oral
exposure or transgenic population replacement strategies, and
are currently under development.

The natural function of RNAI is protection against viruses, and
RNAi has enormous potential in anti-viral therapy. There are
opportunities for RNAi-mediated suppression of viral infections
in insects, including vectors of socio-economically important viral
diseases of humans, livestock and crop plants. Exogenously-ap-
plied or ingested dsRNA can be considered as a boost to the native
RNAi machinery of the host, conferring protection both by prophy-
laxis and direct treatment. The value of such boosting is illustrated
by research on the titer of various mosquito-vectored arboviruses.
RNAi-mediated antiviral immunity contributes to the suppression
of viruses, including dengue virus and Sindbis virus, in the mos-
quito Ae. aegypti, as demonstrated by the increased titer and trans-
mission of these viruses in mosquitoes in which the RNAI

machinery was experimentally silenced (Frane et al,, 2006 Camp-
Bbell et al, 2008 Khoo et al, 2014). Furthermore, viral suppression
is promoted by enhancing the RNAi pathway, achieved by engi-
neering the insects to express an inverted-repeat RNA that triggers
production of dsRNA specific to the virus sequence {Franz ot ai,
2011 Marhur et all, 2010), There is some evidence for viral-medi-
ated suppression of RNAI, for example by the Sindbis virus and
West Nile virus, in mosquito cells (Cirimntich et al, 2004 Schnet-
tler et al, 2012). Such suppression may be the reason why supple-
mentary dsRNA is required to achieve RNAi-mediated elimination
of viral infection from the insect host.

Another insect system demanding urgent solutions to viral
infections is the honey bee, especially in the context of evidence
that viruses, including the Israeli acute paralysis virus (IAPV),
may contribute to the ongoing decline of honey bees, including col-
ony collapse disorder (Ewvans angd Schware, 2011), Evidence that
exogenous dsRNA can supplement the endogenous RNAi machin-
ery comes from the demonstration that IAPV infection of honey
bees can be eliminated by orally-delivered dsRNA corresponding
to two different sequences of the IAPV genome (Maort «f al,
200%). Among colonies inoculated with IAPV, mortality was re-
duced in those treated with IAPV-dsRNA relative to those that were
not treated or that were treated with non-IAPV dsRNA. These re-
sults led to large-scale field test in the USA, in which honey bees
were fed a dsRNA product, Remebee-], in the presence of the IAPV
(Hunter ot al, 2010). Honey bee survival, colony size and honey
production were all increased in the Remebee-l treatment. In-
gested [APV-specific dsRNA successfully reduced the negative ef-
fects of IAPV infection in 160 honey bee hives in two states
(Florida and Pennsylvania) with very different climates and sea-
sons. These results provide the first successful field demonstration
of the use of RNAI as a large scale preventative treatment for an in-
sect disease,

The antiviral effect of RNAi has also been successfully aug-
mented for disease control in a non-insect arthropod, the cultured
shrimp, L. vannamei. Diseases caused by viruses are economically
devastating to the shrimp industry, and induced RNAIi provides
protection from a number of different viruses, including single-
and double-stranded RNA viruses and a DNA virus (Bartholomay
et al, 20012). This strategy enhances RNAi-based antiviral immu-
nity, providing long-term, highly specific protection and a route
for vaccination of cultured shrimp against viral diseases. For exam-
ple, dsRNA designed to target the 5 end of ORF1 in the genome of
Infectious myonecrosis virus (IMNV) provides significant disease
protection even 52 days after vaccination (Loy ¢t al, 2012). More
recently, the same RNAI trigger was used to provide therapeutic ef-
fect such that disease pathology resolved and 50% of animals sur-
vived if the RNAI trigger was provided within 48 h post-infection
(Loy et al, 2012). The outstanding challenge is a viable delivery
strategy, because shrimp culture involves hundreds of thousands
of animals in hectare-sized ponds.

4.3. The evolutionary stability of RNAi-based management of insect
populations

The relationship between viruses and RNAi-based insect immu-
nity is evolutionarily dynamic. This is indicated by both the pres-
ence of viral suppressors of RNAI (see above) and the positive
selection on the genes contributing to RNAi-machinery interacting
with siRNAs, but not the endogenous miRNAs (Gibard et al, 2008).
We can, therefore, anticipate that insects, viruses and eukaryotic
parasites will respond to strong selection exerted by RNAi-based
control strategies. For example, insects that carry viruses with
RNAI suppressors would be at a selective advantage on RNAi-pro-
tected crops, and RNAi-based prophylactics for honey bee colonies
would select for viral pathogens with RNAIi suppression. The RNAi
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suppression mechanisms that have evolved are not specific to a
particular target sequence. This implies that resistance to a dsRNA
specific to one gene cannot be prevented by pyramiding multiple
genes with different function, nor overcome by switching to a dif-
ferent gene or gene set.

The genetic variation that exists within and among insect pop-
ulations could also present a challenge to the application of RNAIi
for pest control, depending on the amount of mismatch present be-
tween the dsRNA and the target transcript. Furthermore, single
nucleotide polymorphisms {SNPs) that result in lower effectiveness
of the RNAI, could potentially be selected for and lead to the evo-
lution of resistance. If such SNPs were synonymous they would
be expected to have little or no fitness cost in the absence of the
selecting agent (dsRNA), and resistance could evolve rapidly. How-
ever, the degree of mismatch (i.e. the number of SNPs) that would
be needed to prevent RNAI from controlling a pest is not known.
The long-term benefits of RNAi-based applications in insect pest
management will require new and independent thought on effec-
tive resistance management strategies designed to minimize selec-
tive pressures and delay the evolution of resistance.

4.4. RNAI risks and regulation

The above examples offer clear evidence for potential applica-
tions for RNAi for the control of insect pests, manipulation of insect
disease vectors, and management of beneficial insects, together
with concerns about the stability of RNAI strategies in the face of
selection for resistance. Overlying these considerations is a very
real uncertainty regarding the environmental and ecological risks
posed by these technologies. The Federal regulatory framework
for estimating the ecological risks associated with RNAi technolo-
gies is still in development, and a number of critical gaps remain
including potential toxicity to non-target organisms {see Sec-
tion 4.1), environmental fate, and importantly, the risk of resis-
tance evolution in target pests (Section 4.3). Documenting
efficacy of the technology is ongoing and regulatory considerations
for RNAi-based insecticidal traits, such as the development of stan-
dardized environmental risk assessment are st111 bemg developed
(Auer and Frederiok, 2009, hutp/freca-g orefeera_pubhlca-
fionsipub 08 2011.pdf). Considerations of how to evaluate
sequence specificity, environmental fate, and exposure of non-
target organisms are still being developed. However, US regulatory
agencies such as the Environmental Protection Agency and the
Department of Agriculture have provided preliminary assessments
(hirprffcera-gmeoorgidocsicora_publications{pab U8 201 1.pdD)
suggesting that data requirements for RNAI traits may be reduced
based primarily on the lack of a plant incorporated protein, such as
a Bt toxin. There is also a lack of information on the risk of insect
resistance to RNAi-mediated control that is a critical impediment
to the development of an insect resistance management plan
aimed at promoting a responsible and sustainable use of the tech-
nology. Insecticide resistance presents a major challenge for the
sustainable control of pests. In the case of insects, pest species have
found ways to evolve resistance to nearly every control strategy
that has been used. Predictions that resistance could not develop
to a new control strategy (e.g., ¥Witliaws, 1947%) have proven to be
wrong time and time again.

5. Concluding comments

A decade of research on RNAI in insects has demonstrated the
great power of the technology for discovery-led science and poten-
tial for improved management of insect populations. As the science
has matured, it has equally become evident that RNAi is no pana-
cea, but introduces a range of new conceptual and technological

challenges for insect scientists. Insects vary widely in their amena-
bility to RNAI, and no single protocol is suitable for all species.
Against the backdrop of this functional diversity, it is unfortunate
that there has been a dearth of systematic investigation of the
mechanisms of RNAI in insects. We still have only a weak under-
standing of whether and how the RNAI signal is amplified in indi-
vidual cells and disseminated between cells in insects. It is
increasingly recognized that the caveats in our understanding of
insect-specific mechanism are a major limitation to the implemen-
tation of RNAI. A priority for the future is for the insect research
community to apply their persistence and ingenuity to solve the
fundamentals of how insect RNAi works, in the context of the
physiology of the insect body, and apply that to the pressing prob-
lems posed by pests and beneficial insects.
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